
.-----===------------------------------------===-----------===------.
/__/	___ ___ / /\ / /\		
		:	/__/\ / /\ / /::\ / /:/
		:	\ \:\ / /:/ / /:/\:\ / /:/
__		:	\ \:\ /__/::\ / /:/~/:/ / /:/ ___
/__/_	:	____ ___ __\:\ __\/\:__ /__/:/ /:/___ /__/:/ / /\	
\ \:\/:::::/ /__/\		:	\ \:\/\ \ \:\/:::::/ \ \:\ / /:/
\ \::/~~~~ \ \:\|	:	__\::/ \ \::/~~~~ \ \:\ /:/	
\ \:\ \ \:__	:	/__/:/ \ \:\ \ \:\/:/	
\ \:\ __\::::/ __\/ \ \:\ \ \::/			
__\/ ~~~~ __\/ __\/			
`---'			
.----------------,-------------------------------.------------------.			
(The Art of Scripting Intro) by Grifisx			
`----------------`-------------------------------'------------------'
Version: etherea-0.1a/20061901

A brief introduction to KVIrc scripting languageA brief introduction to KVIrc scripting language

Start:

This is meant to be such a Start about programming, a summary of
functions, commands and some of the most important syntaxes.

Translated and adapted from the original handbook (so tnx to Pragma
=D).

Index:
+Variables:

-Global
-Local
-Array
-Dictionary

+Operators
-Assignment
-Binding
-Arithmetical operators
-Increment and decrement
-Strings interlink

+Cycles
-while(){}
-for(;;){}
-foreach(,){}

+Control conditions
-if/else
-switch/case()

Variables

Global Variables:
The name of a Global Variable is defined through the percentage
symbol (%), followed by a capital letter starting from 'A' to 'Z',
after followed by a train of letters (lowercased or capitalized) or
numbers or symbols (from 'a' to 'z', and from '0' to '9','.','_').
Example:
"%INDEX","%My_nickname","%Index","%Article" and "%article_number", a
Global Variable does exists for the whole application' life.

Try this out:
/%Hello = "Hello world!"
Now from any window, or in such whatever script, the variable %Hello
will exists with the content: "Hello world!".

Try in any window:
/echo %Hello
so you can face it.

Local Variables:
The name of a Local Variable is defined by the percentage symbol (%),
followed by a lowercase letter starting from 'a' to 'z', and followed
by a train of letters, numbers or symbols ('.','_').

Example:
"%index","%my_nickname","%foo","%bAR1" and "%foo.BAR"

A local variable is shown inside the instruction block where it is
created, for example, in an alias, or inside an existing code.

Try this out:
/%hello = "Hello world!"
And now from any window try:
echo %hello
The result will be... nothing! That's just because the life of the
variable has been terminated with the command execution.
Variables are created with the assignment of an own value and are
destroyed with the assignment of a null value, for example:

Creation:
%nick=”Grifisx”
Destruction:
%nick=””

Array:
An array is a collection of variable data indexed by number; the
first index of an array is 0 while the last is equal to the lenght
minus one (so that counting starts from zero).
To obtain the exact number of elements in an array we can use this
expression: %ArrayExample[]# (with upcomed version starting from
“Anomalies” to furthers using even the $lenght(arrayname[]) that is
more suitable obtaing a more clear and readable code).

It is not necessary to declare the lenght of the array as in many
other programming languages, once a number has come to be added, the
lenght will vary automatically; if the first assigned element will be
instructed to an index higher than 0 (>0), all the previous positions
will be empty.

For example:
%Array[0]=Grifisx
%Array[1]=Noldor
%Array[2]=Pragma
#Print all the content of the array
echo %Array[]
#Print the lenght of the array
echo %Array[]#
echo $length(%Array[])
#Print only the first element
echo %Array[0]

Just put it in the Tester Script and execute.

And now try out this code:
%Array[0]=Grifisx
%Array[1]=Do not show this
%Array[2]=Noldor
%Array[5]=Secret shhhh..
%Array[8]=Pragma
for(%i=0;%i < $length(%Array[]);%i+=2)echo Entry %i: \"%Array[%i]\";

As you can see it is really simple to create collections indexed by
numbers, so it's the easier to move inside them; here was the aim to
use a for cycle but same could be using a foreach(%item,%Array[])echo
%item, or a while cycle.
An array can be initialized in this way:
%Array[]=$array(Grifisx,Noldor,Pragma,etherea);
that is using the function $array(<el1>,<el2>,<el3>,<el4>,..).

And cames now the time to have a look to the older brother of array:
the dictionary.

Dictionary
Dictionaries are associative array with string as values (easy said
an array with not numeric index); and let's have a closer look to the
example:

%Songs{Jimi Hendrix} = Voodo child
%Songs{Shawn Lane} = Gray piano's flying
%Songs{Imogen Heap} = Hide and Seek
%Songs{Greg Howe} = "Full Throttle"
Show everything in a string
echo %Songs{}
Show every element of the dictionary
foreach(%var,%Songs{})echo %var

Naturally, in here such as in arrays, %Songs{}# will give back the
number of the elements of the dictionary.
While %Songs{}@ will give back a list of those same elements
separated by commas.

Operators and Assignment
“=”(Assignment)
Assignment operator is “=” and work as for very other language, see
some examples:

Assignment to Local Variable %idx the value of 0
%idx=0;
Assignment to Global Variable %My_Nick my nickname
%My_Nick = “Grifisx”;
Assignment to Variable “%name” the value gained from a function
%name = $function();
Recording in element 0 of the array “%Addresses” the string “start”
%Addresses[0]=”start”;

“=~”(Binding) advanced scripting
This operator is for a more experienced user handling.
It's useful to have searches and substitutions inside a string, even
using regular expressions.

Basic syntax:
<basic_string> =~ <operation>[parameters]
Where <operation> can be 't','s'.
<basic_string> is the string on which get operation <operation>.
-'t' is used for replacing letters.

The complete syntax is:
<basic_string>=~t/<ToBeReplacedChars>/<ReplacedChars>/

This operation can even be done with 'y' or 'tr' (to preserve
languages compatibility).

For Example:
%A=This is a test string
echo %A
%A=~ tr/abcdefghi/ABCDEFGHI/
echo %A

-'s' is used to replace letters associations.

The complete syntax is then:
<basic_string=~s/<pattern_ToSearchFor>/<pattern_Replaced>/[flags]

Here's an example with regular expression:
%A=This is a test string
echo %A
%A=~ s/([a-z])i([a-z])/\\1I\\2/
echo %A
%A=~ s/([a-z])i([a-z])/\\1@\\2/gi
echo %A

[flags] can be a combo of letters 'g','i' e 'w'.
'g' ->globally performs a search skipping the first stop on first
<pattern_ToSearchFor> occurrency.
'i' ->performs a non case sensitive search.
'w' ->performs a simple wildcards search.

“X=” Arithmetic operations
General syntax:
<left_operand> <operation> <right_operand>

Where <left_operand> and <right_operand> must be numbers.

All these operations do <operation> (formerly be +,-,*,/,%,|,&)
between the right operator and the left operator, so that the result
is kept in the left operator (that should be a variable or an element
of an array or an element of a dictionary).

<operation> can be:
+= : sums <right_operand> to <left_operand>
-= : substracts <right_operand> from <left_operand>
*= : multiplies <left_operand> by <right_operand>
%= : computes the module <right_operand> by <left_operand>
|= : computes logical OR between <left_operand> and <right_operand>
&= : computes logical AND between <left_operand> and <right_operand>
/= : divides <left_operand> in <right_operand>

For example:
%A=8
%A+=3
echo %A

“++,--” Operators for increment and decrement
These two operators are only working with numeric variables.

General syntax:
<left_operand> <operator>
++ increments <left_operand> by a single unit
-- decrements <left_operand> by a single unit

And this turns out to be += 1 or -= 1.

For example:
%A=3
%A++
echo %A

The result is obviously 4.
These operators are often used in cycles like:
%idx=0;
while(%idx==8)
{

echo Actual Value %idx;
%idx++;

}

“<<,<+,<” Operators of strings interlink

Operator <+ : appends <right_operand> to <left_operand> continually
Operator << : appends <right_operand> to <left_operand> unlinking
with a blank space
Operator <, : similar to '<<' appends dividing operands with a ','.

For example:
%sent=Hello
%sent <, whassup
%sent << ?
echo %sent

Let's put it in the Script Tester and sit down watching those
results.

Cycles
while
Syntax:
while(<condition>){<commands>};

The while command executes in a very looping way a command or a block
of <commands> until it verifies (or do not verifies) the given
<condition>.

For example:
%i = 0;
while(%i != 10)
{

echo %i;
%i++;

}
echo End

Here's an example with a single command:
%i = 0;
while(%i != 10) %i++;
echo %i;

Cycle can be interrupted with the break command.

Comparison methods that can be used are:
== (is equal to)
!= (is different from)
<= (is lower or equal to)
>= (is greater or equal to)
< (is lower than)
> (is greater than)
!<variable> (that doesn't exist, as for example:
if(!%nick){<commands} means there is no variable %nick so it has no
value)
<variabile> (that does exists, as for example Es: if(%nick){} means
if there a variable %nick it has a value).

It is also possible to use multiple conditions chaining with the && (
correspondent to the logic AND, so that commands are executed only if
both given conditions are true) or with || (correspondent to the

logical OR, so that commands are executed only if almost one of the
given conditions is true).

for
Sintax:
for([initialization];<condition>;[operation]){<commands>;}

The for(;;){} cycle allows the initialization of the variable used as
index to loop, sets the valid condition to execute the loop itself
and the operation granting to act on the index, all in a complex but
single command.

This cycle can be break with the command break.

For example:
With a single command
for(%i = 0;%i < 100;%i++)echo %i
for(%i = 100;%i;%i -= 10)echo %i
%i = 0
With a block of commands
for(;%i;)
{

echo %i
%i++
if(%i > 10)
break

}

do
Sintax:
do {<command>} while (<condition>)

Executes <command> once then evaluates the <condition>.
If <condition> evaluates to true (non zero result) then repeats the
execution again.
<command> may be either a single command or a block of commands.

For example:
%i = 0;
do %i++; while(%i < 100);
echo "After first execution: %i";
%i = 10
do {

echo "Executed!";
%i++;

}
 while(%i < 1)
echo "After second execution: %i";

foreach

Sintax:
foreach(<variable>,[<item>[,<item2>[,<item3>[.....]]]){<command>};
It executes the <command> (also a block of commands closed within {}
as for the while and for cycle), until it can assign an <itemX> to
<variable>.
<item> can also be a simple variable, an array, a dictionary or a
function giving back a value or a list of values.

For example:
foreach(%i,1,2,3,4,5,6,7,8,9)echo %i

Or just try in a channel window:
/foreach(%nick,$chan.users) echo User: %nick
In this last case the result is being justified by the fact the
function $chan.users gives back the list of all nicknames currently
on a channel, separated by a comma.

Try this out:
/echo $chan.users.

Control conditions
if/else
Sintax:
if(<condition>){<command1>}[else {<command2>}]
It executes the <command1> (or the block of commands) if the
<condition> is true; if used, else is going to execute the <command2>
(or the second block of command) if the if <condition> is false.

For example:
%idx=0
while(%idx<=10)
{

if(%idx==3 && %idx!=6) echo THREE
else echo %idx

if(%idx==6)
{

echo S
echo I
echo X

}
else
{

echo
}

%idx++
}

In this loop too, as in the while cycle, confrontation methods can be
used and defined as follows:

== (is equal to)
!= (is different/not equal from)
<= (is lower or equal to)

>= (is greater or equal to)
< (is lower than)
> (is greater than)
!<variable> (it doesn't exists, as for example if(!%nick){<commands}
means if there is not the variable %nick it has no value)
<variabile> (it does exists, as for example if(%nick){} means if
there is the variable %nick it has a value).

There can even be the chance to use multiple conditions interlinking
with the “&&” (corresponds to the logic AND and commands are executed
only if both given conditions are true) or with “||” (correspnds to
the logical OR, commands are executed only if one of the cgiven
conditions is true).

switch\case
Sintax:
switch [-s] (<expression>)
{

case(<value>)[:]<command>
[break]
match(<wildcard_expression>)[:]<command>
[break]
regexpr(<regular_expression>)[:]<command>
[break]
default[:]<command>
[break]

}
The switch construct has been enriched (on the way of the normal
construct found in the C language) by two new labels: match() and
case.

match() allows the comparison through simple wildcards:
%nick=Grifisx
switch(%nick)
{

match(*r?fisx)
{

echo Hello Grifisx
break

}
match(*W?fisx)
{

echo who are you?
break

}

}

And then case:
%nick=Grifisx
switch(%nick)
{

case(Grifisx)
{

echo Hello Grifisx
break

}
case(WHO)
{

echo who are you?
break

}

}

And the label regexpr that allows more experienced users to use and
compare even using regular expressions.

switch (-s) canbe used to allow comparison in non sensitive cases
(distinguishing lower or capital letters).

/ECHO STOP.
- - - - - - -- - - - - - - -- - - - - - - - - -- - - - - -- - - - - -
"You see things; and you say `Why?' But I dream things that never
were; and I say `Why not?"
(George Bernad Shaw)
- - - - - - - - -- - - - - - - -- -- - - - - - - - - - - - - - - - -
Grifisx

