
.-----===------------------------------------===-----------===------.
/__/	___ ___ / /\ / /\		
		:	/__/\ / /\ / /::\ / /:/
		:	\ \:\ / /:/ / /:/\:\ / /:/
__		:	\ \:\ /__/::\ / /:/~/:/ / /:/ ___
/__/_	:	____ ___ __\:\ __\/\:__ /__/:/ /:/___ /__/:/ / /\	
\ \:\/:::::/ /__/\		:	\ \:\/\ \ \:\/:::::/ \ \:\ / /:/
\ \::/~~~~ \ \:\|	:	__\::/ \ \::/~~~~ \ \:\ /:/	
\ \:\ \ \:__	:	/__/:/ \ \:\ \ \:\/:/	
\ \:\ __\::::/ __\/ \ \:\ \ \::/			
__\/ ~~~~ __\/ __\/			
`---'			
.----------------,-------------------------------.------------------.			
(The Art of Scripting Vol.1) by Grifisx			
`----------------`-------------------------------'------------------'
Version: etherea-0.1a/20062001Version: etherea-0.1a/20062001

Cycles, Conditions and AliasesCycles, Conditions and Aliases
Start:

What is the meaning of a script? Answer is easy: to simplify your
life while chatting, to fit your IRC client in the best ambience
ever, with the best comfort, best eye candy and so on.

Let's get it started now, much code as much explanation.
Your KVIrc client is right there, download the latest version; if you
are Linux users just compile the cvs o grab the latest snapshot
package. If you are Windows users just download the latest snapshot
(not the stable one).
The latest snapshot release can be found here:
ftp://ftp.kvirc.net/pub/kvirc/snapshots/

First of all you need to activate the bar which will allow the
creation of any script.

From the KVIrc client:
Settings --> Toolbars --> Show scripting
You'll see the bar with all the buttons needed to make KVIrc even
more snug, moreover to customize it as much as you like.

This tutorial is all about alias and its use.
Aliases are commands that can be useful to add users own customized
commands plus the ones you already find in the client.
To create an alias first of all you need to open the Alias Editor
using the green pushbutton [/a] that appears in the scripting bar (or
use the shortcut CTRL+ALT+1 or use the command “Modify Alias” from
the Scripting menu), then create a new command (or alias): right
click on the command list on your left and select “Add Alias”, type
the name you want for your new alias (ie: mynewalias) in the dialog
box and hit OK.
You can easily change the name of the alias previously defined using
the “Rename” button on the top right window; please be careful in
renaming pre-existent aliases, this operation should be done only if
you are experienced users.

Now put the code in the already created alias, let's try with this

example code that's going to greet all the users in a channel, though
having a limit of six unique names (truly, that seemes unuseful but
it's needed for the explanation and comprehension.. moreover
nothing's unuseful).

And here's the code:
code n1
%idx=6;
foreach(%i,$chan.users){
if(%idx==0) {
say Geez! You're so many =D Greets to you ALL!;
break;
}
say HELLOW %i;
%idx--;
}
end code

Pushing aside the fact I won't explain the syntaxes used in every
KVIrc commands (you've got to deal with Help -> Browser help.. to
have a look to the handbook), here's an deepen:

code n1
This is a simple comment: comments in kvs (stands for KVIrc
Scripting) see themselves preceded in line by the “#” (sharp) symbol.

%idx=6;
This is the initialization of variable %idx; kvs variables are
preceded by the “%” (percentage) symbol. And it is very different
using %Idx and %idx, as variables starting with a capital letter are
played as Global Variables in KVIrc (please refer to
AOS_Vol00(Introduction)), meaning that they won't be destroyed by
themselves but need the user set their value to null (ie: %Idx=””);
also they can be seen by other scripts running for the client. The
low letter variables instead have their life exists only for the life
of the command or the function they are in, then will get destroyed.

To better understand let's try from any window, by the imput line:
/%glomp =3
and then
/echo %glomp
As you can see the result is... nothing! There is no result as the
life of %glomp had existed only for the time of the execution of
/&glomp =3 and then went destroyed.

Otherwise, trying this out:
/%Glomp =3
/echo %Glomp
We can observe that the result is 3, showing that the variable with
the capital letter stood alive even after the execution of the first
given command.

In our code we do analyze the variable used to greet 6 people in a
chan, avoiding to greet every user in a crowded channel.

foreach(%i,$chan.users){
code
}

Here is the use of the foreach; command, its syntax can be seen in
the KVIrc guide while you can see $chan.users is a KVIrc function
returning in an array (to be considred as a list) every nickname of
every user at the moment in the channel (other functions can be found
in the Help -> Browser help..).
See it in action in any channel and try it out:
/echo $chan.users
Ma result is:
[09:31:00]
Grifisx_away,morfeux,AM1C0H4CK3R,Cif,franzi_,MysteryBETA,nonno_rik,oh
i[gentoo],ohiahiohi,redsend,Scorp[ZzZ],zerymo.

That %i, found in the foreach, means an element of the array (the
actual one) has been defined by the sintax.
So that the code means “for every element(foreach) in the array
$chan.users do execute this code { code to be executed }”. And let's
see the code we want it to do.

if(%idx==0) {
say Geez! You're so many =D Greets to you ALL!;
break;
}
It's a small check to avoid greeting all the users in the channels
Qui facciamo un piccolo controllo che ci eviterà di salutare tutti
sul canale, e limiterà il saluto a solo 6 persone.

If (variable %idx is equal to zero) execute this code {code}.

say is a KVIrc command used to write some text a defined window.
break is used to break any cycle, in this case it will break the
foreach cycle.
So the statement “Geez! You're so many =D Greets to you ALL!” it's
defined with say and the cycle breaks.

Let's have a look when the above condition (if(%idx==0)) is not true:

say Hello %i;
%idx--;
That means: say Hello %i (we stated %i as the actual element of the
array in which we are doing the cycle, so the nickname) and decrement
%idx.

On the first turn %idx is equal to 6, the condition (%idx=0) is not
true, it does say Hello nickname and decrements %idx becoming 5 and
executes another loop; this all until the given condition is true, ie
%idx is equal to zero, and will break.

Here we go for a quick overview of some more KVIrc commands, just

before editing more the code:
On the input line of any channel try:
CTRL+B : it will appear a boxed B (named BOLD) and everything written
on the very next will be displayed as bold text;
CTRL+U : it will appear a boxed U (named UNDERLINED) and everything
written on the very nex will be displayed as underlined text;
CTRL+K : it will appear a boxed K and a little table of colors
associated with numbers, type the number of the chosen color (or
single click it with your mouse) and everything written on the very
next will be displayed as colored text. (You can make tons of
different color sequences, just chose for every word or character a
different colors. Note that all the defined colors can be specified
and edited/changed via the Preferences Menu -> Themes -> Default
colors).
These are only a few commands we do need for the moment.

Scripting uses the $b() for bold text, $u() for underlined text and
$k(<background_color_number>, [foreground_color_number]) for colored
text.
Give it a try on the input line:

/echo $b()Hello
Then we're ready to drop the code using some modification:
code n1
%idx=6;
foreach(%i,$chan.users){
if(%idx==0) {
say Geez! You're so many =D Greets to you ALL!;
break;
}
say Hello $k($rand(12))%i;
%idx--;
}
end code

There's a new command as you can see: $k($rand(12)). As known $k() is
used for the colors and $rand(<value_lag>) is used to obtain a random
number between zero and the given number in the brackets (this can be
also seen in the KVIrc Help).

Try this:
/echo $rand(12)
The result is a random number between 0 and 12.
You could object it is not useful to chose two random colors on the
follow-on, as casualty allows this randomness, so here's the need of
a control done to modify the actual number color if it is the same as
the other one.
We need to remember the old value, meaning we do need to create a
variable able to store it, and have a match check of both generated
numbers; in case the values are identical the go-to-change value
number will be the second in time, to which will be added a new value
(for example 1) in order to change (increment) the value itself and
return a different color.

Transforming into code:

Do create the variable %oldColor with initialized value = 0;
do create variable %newColor with initialized value $rand(12);
do create the check, if %oldColor == %newColor then %newColor++;
store in %oldColor the actual value of %newColor.

The code:
%idx=6;
%oldColor =0;
foreach(%i,$chan.users){
%newColor=$rand(12)
if(%idx==0) {
say Geez! You're so many =D Greets to you ALL!;
break;
}
if (%newColor==%oldColor){ %newColor++;};
say Hello $k(%newColor)%i;
%oldColor=%newColor;
%idx--;
}

There is a significant thing to look at: the initialization of
variable %oldColor stands out of the cycle, otherwise it would began
to initialize itself every time.
If you like to have your life more hard than a thorned vine, you
would likely prefer the nicknames written in different capitalizing,
taking turn of an up and a lower case letter.
Before examine the next portion of code take a moment to open the
KVIrc Help to the Functions side, switch to s letter and see how many
functions are there, able to modify strings; are all identified with
prefix $str.xxxxxx; we need a up/lower letter case so we do need
these two:
$str.upcase(<string_to_convert>)
$str.lowcase(<string_to_convert>)

On the input line, type:
/echo $str.upcase(“geeeeeeeez”)
Hot work is to convert not all the singles nicknames, but letter by
letter, we need a function able to divide the string:
$str.section (< string_to_be_divided >, <separator_element>,
<position_where_to_divide>, <position_where_to_stop_dividing>).

Try it out with echo:
/echo $str.section("Name**Surname**Nick**Phone","**", 2, 2);
The result is “Nick”.
Moreover there's the need of the $str.len(<string>) function that
returns the lenght of the string.

So the code:
%idxN=6;
%oldColor =0;
foreach(%i,$chan.users){
%szNick=%i
%idx=1
%itmp=1
while(%idx!=($str.len(%szNick)+1))
{

if(%itmp==1)
{

%sztmp =$str.upcase($str.section(%szNick,"",%idx,%idx));
%itmp=0

}
else
{

%sztmp =$str.lowcase($str.section(%szNick,"",%idx,%idx));
%itmp=1

}
%szNickColorato=%szNickColored%sztmp
%idx++;

}
%newColor=$rand(12)
if(%idxN==0) {
echo Geez! You're so many =D Greets to you ALL!;
break;
}
if (%newColor==%oldColor){ %newColor++;};
say Hello $k(%newColor)%szNickColorato;
%szNickColored=""
%oldColor=%newColor;
%idxN--;
}

Fortunately it's not that complicated.
%idx had been changed into %indxN as my habit to call every index
%idx, following this I need to separate indexes in order not to
mistake them.
All variables are initialized, then the cycle can run.

Let's check the essential steps of the transformation and the engine:

while(%idx!=($str.len(%szNick)+1))
until the %idx variable is different from the nick+1 lenght (the end
has not been reached);

%sztmp =$str.upcase($str.section(%szNick,"",%idx,%idx))
%sztmp is equal to the letter trasformed in Upper case; here I do
select nick(%szNick) using the char “” (ie: no char, so it is divided
letter by letter) starting from actual index until it reaches the
actual index itself.

Just use my nickname: Grifisx
/echo $str.section("Grifisx","",1,1)
the result is “G”.

And for example:
/echo $str.lowcase($str.section("Grifisx","",1,1))
will have the same result as “g”, as it is the same as:
/echo $str.lowcase(“G”).
As you can see in the code %itmp=0 is set, so on the next loop it
won't be entering in the if but in the else; %idx instead will
increment on every cycle:

$str.upcase($str.section("Grifisx","",1,1))
$str.lowcase($str.section("Grifisx","",2,2))

$str.upcase($str.section("Grifisx","",3,3))
$str.lowcase($str.section("Grifisx","",4,4))

As you can see there's:
%szNickColored=%szNickColorato%sztmp
because %sztmp contains the actual transformed letter, in this case
of Grifisx let's put the “g”, so it is:
stood that %szNickColored is empty in the beginning :
%szNickColorato=%szNickColored%sztmp --> ””=””g
we have then %szNickColored equal to “g”, so on the next loop we'll
have:
%szNickColored=%szNickColored%sztmp --> g=gR (because %sztmp will
hold the second letter of my nickname in uppercase).

So %szNickColored is equal to “gR”, and on the next loop:
%szNickColored=%szNickColored%sztmp --> gR=gRi
.. and so on, until:
while(%idx!=($str.len(%szNick)+1))
until the lenght of my nickname is not exceeded by 1 (meaning the
nickname is ended).

That's not enough!
We want our greet turned out into a beautiful rainbow drop!
And put your hands on the code in order to turn a string into
rainbow.

%idxN=6;
%oldColor =0;
foreach(%i,$chan.users){
%szNick=%i
%idx=1
%itmp=1
while(%idx!=($str.len(%szNick)+1))
{

if(%itmp==1)
{

%sztmp =$str.upcase($str.section(%szNick,"",%idx,%idx));
%itmp=0

}
else
{

%sztmp =$str.lowcase($str.section(%szNick,"",%idx,%idx));
%itmp=1

}
%szNickColored=%szNickColored%sztmp
%idx++;

}
%newColor=$rand(12)
if(%idxN==0) {
%szFrase= "Geez! You're so many =D Greets to you ALL!";
%idxW=1
while(%idxW!=($str.len(%szFrase)+1))
{

%sztmp2 = $str.section(%szStatement,"",%idxW,%idxW)
%szStatementColor=%szStatementColor$k($rand(15))%sztmp2
%idxW++;

}
say %szStatementColor;
break;
}
if (%newColor==%oldColor){ %newColor++;};
say Hello $k(%newColor)%szNickColored;
%szNickColored=""
%oldColor=%newColor;
%idxN--;
}

There's not that much to explain as we already saw many of those
constructions.
Just a note: this small script can be annoying in some channels you
may join, we have built it up with the only purpose to understand and
improve the KVIrc scripting system that will lead us further to the
creation of more complex scipts and more.

Again, before have my greet, I'd like to end up with the aliases,
teaching you on how to switch from an “argument” to an “alias”.

If you want to write:
/colorize “hello pals”
first of all create the colorize alias stating that its job is only
to give colors to the words it's followed by (in this case “hello
pals”), then insert this (in the alias itself):

echo $k($rand(12)) $0-

Just it!
$0- indicates ALL the statment (or words), starting from the
beginning, that will be read.
$0 (without -) indicates the first element to keep in; $1 indicates
the second element, $2 the third and so on.. ($1- indicates all the
statement or the words starting from the second element; $2-
indicates all the statement or the words starting from the third
element..).

One last example on the alias:

echo $k($0) $1-

and from the input line type:
/colorize 5 I write in colors!
We used the firs value ($0) to give the color to the statement, then
the $1- to take the rest of the statement starting from the first
element ($0 is the number of the color).

Quick note: to create an alias on-the-fly, without having to open the
editor, just do:
/alias(aliasname){alias code;}

For example:
/alias(colorize){echo $k($0) $1-;}
It will create the “colorize” alias and will instruct it with the

code echo $k($0) $1-;
To destroy it, directly from the input line, just type:
/alias(colorize){}
Without any code within the brackets.

Consider aliases as functions in the way they are used, to make
themselves give out values using the return command; again in the
input line:

/alias(sum3){ return $($0 + $1 + $2); }; [RETURN]
/%Somma = $sum3(3,4,5) [RETURN]
/echo %Somma [RETURN]
The sum3 alias has been created (it contains the code $($0 + $1 + $2)
noticing that $(arithmetical_expression) is used to compute the value
of the arithmetical expression within the brakets); this alias has
been treated as a function (note $sum3 instead of sum3) giving it out
three numbers (3,4,5) and has been used to gain the value of the sum
of the three numbers, storing it in the variable %Somma.
The last command returns on display the content of variable %Somma.

/ECHO STOP.
- - - - - - -- - - - - - - -- - - - - - - - - -- - - - - -- - - - -
"You see things; and you say `Why?' But I dream things that never
were; and I say `Why not?"
(George Bernad Shaw)
- - - - - - - - -- - - - - - - -- -- - - - - - - - - - - - - - - - -
Grifisx

